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LETTER TO THE EDITOR 

A new set of orthogonal polynomials for use in neutron 
transport theory 

A Sengupta 
Nuclear Engineering and Technology Programme, Indian Institute of Technology, Kanpur 
208016, India 

Received 30 September 1985 

Abstract. The proper set of orthogonal polynomials to use in approximation work depends 
on the weight function of the problem. Here, we introduce a new set of polynomials 
orthogonal with respect to a simple closed-form approximate representation of the weight 
function of Case's half-range neutron transport theory. The accuracy of this approximate 
weight function is shown to be very good, and the construction procedure of the new set 
of orthogonal polynomials, { C , ( p ) ,  c <  p c I}, is demonstrated. 

The choice of the proper set of orthogonal polynomials for construction of approximate 
solutions of problems in mathematical physics is of central importance if the approxima- 
tion is to yield reliable results with a reasonable number of terms. Among the equations 
in physics, the one-speed neutron transport equation is especially interesting, because 
the complete set of relevant eigenfunctions contain, besides regular functions, singular 
distributions in the form of the Cauchy principal value and Dirac delta distributions. 
These eigenfunction(a1)s are complete in LJO, 11 with respect to the weight function 

where 

and 

a = X ( o ) - '  = vg( 1 - c)1 /2  

cvo 1 + vo 
-1n-- - 1. 

2 1 - v ,  

We note that the weight function w ( k )  is expressed in terms of the function O(-p )  
which satisties a non-linear integral equation (3) .  

For obtaining approximate solutions of the neutron transport equation, it is usual 
to use the classical orthogonal polynomials of Legendre or Chebyshev, as the funda- 
mental basis functions. It is the purpose of this letter to point out that the use of the 
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classical orthogonal polynomials, though convenient, is not the best possible method 
in transport theory, because the actual set consists of the Case eigenfunction(a1)s with 
respect to the weight function w(p). Hence it is more appropriate to seek polynomials 
that are orthogonal in ( 0 , l )  with respect to the given weight function w(p), and to 
use this new set for transport theory work. 

This, of course, would have been a straightforward programme had it not been for 
the transcendental nature of the weight function as given by equations (1)-(3). We 
have, however, constructed [ 13 a very simple and accurate approximation of the weight 
function given by 

where 

a‘O’ = ;(a+ +a-) 
with 

and 

a,+ = -exp( -2z,/ yo) 

zo being the extrapolated end point, and 

1 1 v0 +--1n- 
1 

-- D2=- 
1 

D, = 
2v,(vo-l) 2cv; 2(vo- l )  2cvo v,-1 

2cv: 2v,( v,+ 1)  2vo(v,+ 1) 2cv, v,+ 1’ 
U0 +In- 

3 -- 1 1 1 
E E2 = 1 -  

The above approximation is obtained from the orthogonality integrals 

(40+, 4 0 * ) w ( o )  = F(fCvo)2X(*~o)  

(see [ l ]  for details). Thus equations (2)  and (3) are approximated as 

1 x ( i )  ( -p )= -  a‘”( - p )  
f f + P  

1 - t’X’(0) 
dt  i = O ,  1,2 , . . . .  

Specifically, we have 
R ( 1 )  ( - p )  = 1 - f C v ; p ( P / R ( o ) )  

where 
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CY1=c[2vo(vo-p)(1-c)]-1 

C Y )  = XZ(0) - c[(l - c ) (  v i - p 2 ) ] - 1 .  

CY2 = c [  2 vo( U0 + p )( 1 - c)]-l 

The fractional per cent errors of X ' " ( - p )  and X ( ' ) ( - p )  as given by 

where X ( - p )  are tabulated in [2], are typically of the order of lo-' and low2 
respectively, for all values of p and c. A representative display of the approximate 
values of the various quantities of interest is shown in table 1 .  

Table 1. Approximate values of various quantities of interest for different p and c. 

C 0.1 0.5 0.99 

F 0.1 0.5 1 .o 0.1 0.5 1 .o 0.1 0.5 1 .o 

0.9899 
0.9912 
0.9905 
0.9926 
0.9446 
0.9465 
0.2104 
0.001 5 

0.9899 0.9899 
0.9912 0.9912 
0.9905 0.9905 
0.9894 0.9906 
0.6838 0.5083 
0.6830 0.5083 
0.1139 0.0037 
0.0012 0.0004 

0.9597 
0.9594 
0.9595 
0.9660 
1.1444 
1.1520 
0.6954 
0.0303 

0.9597 
0.9594 
0.9595 
0.9546 
0.7748 
0.7708 
0.4925 
0.0231- 

0.9597 
0.9594 
0.9595 
0.9610 
0.5519 
0.5528 
0.1636 
0.0162 

0.9336 
0.9334 
0.9335 
0.9401 
1.3734 
1.3832 
0.8024 
0.0938 

~ ~~~~ 

0.9336 0.9336 
0.9334 0.9334 
0.9335 0.9335 
0.9269 0.9394 
0.8646 0.5909 
0.8585 0.5947 
0.6385 0.6842 
0.0723 0.0513 

The relative accuracy of do) as compared to w was checked by evaluating 

where 
A, = -vO[ U,+ ~ ( 1 -  c ) " ~ ]  A,= -U;( U +  (Y) A,= v ( v + a )  

and comparing it with the exact result obtained from the orthogonality relation 
(+o+, + v ) w  = O .  Some illustrative results for v =0.1, 0.5 and 0.9 are: c =0.1, 
(&+, 4 u ) w ( ~ )  = 6.457( -7), -2.843( -6), -6.361( -6); c = 0.5, (&+ , 4 v ) w ( ~ )  = 8.796( -5), 
-3.758(-4), -8.088(-4); ~ ~ 0 . 9 9 ,  (&+, +y)W(~)=3.384(-3) ,  -1.633(-2), -3.291(-2) 
respectively, where a ( - 6 )  = a x lo-''. This, together with the simpler example given 
in [ 13, provides the confidence necessary in using the very simple expression for w ( ' ) ( p ) ,  
as given by equation (4), in place of the transcendental, non-linear exact w(p) of 
equations (1)-(3). 

Having been assured of the utility of w'O'(p) ,  we orthogonalise (1, p, p2, . . . } in 
the interval 0 s  p s 1 ,  following the simple prescription of Golub and Welsch [3]. 
Thus, let us define the moments of w") by 

mu = lo1 w(')( p ) p  i + j - 2  d p  i , j = l , 2  ,..., N+1 
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and let 

where 

Now construct 

ri,i+l ri-1.i ri + 1 ,i+ I 
PI =- 

rti rr-1.t-1 r i i 
i = 1 , 2 ,  . . . ,  N 6. =--- 

where 
roo = 1 rol = 0. 

Then with CO= 1,  C-, = 0, the set {C, (p ) }Eo obtained from the three-term recurrence 
relation 

P l ~ , ( c L ) = ( ~ - - s , ) ~ , - I ( p L ) - P , - l ~ l - *  i = 1 , 2 ,  . . . ,  N ( 5 )  

form acomplete orthonormal system in (0, 1 )  with respect to w ' O ' ( p ) .  In  the present case, 
we have 

which may be conveniently expressed in terms of 

1 
n 

" d p  =- (1 - vonl,-,) 

where 
vo+ 1 

Zo=ln- 
VO 

as 

The above m, can be evaluated recursively; hence rlj, a,, pI and finally C , ( p )  is obtained 
from equation (5). The set {C,} constitutes the orthonormal set we wished to obtain. 
The new set of polynomials, which depend on the properties of the medium through 
c and y o ,  is now being used by us, together with a rational function approximation 
of Case's singular eigenfunction [4], to obtain a discretised spectral representation of 
the solution of the one-speed neutron transport equation. This solution, which will 
be reported in a forthcoming publication, replaces the Case transient integral by an 
infinite sum, involving only regular functions, having the property that this sum tends 
to the integral, as an approximation parameter in the former tends to zero. 
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